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SUMMARY

Prokaryotes use a mechanism called priming to up-
date their CRISPR immunological memory to rapidly
counter revisiting, mutated viruses, and plasmids.
Here we have determined how new spacers are
produced and selected for integration into the
CRISPR array during priming. We show that Cas3
couples CRISPR interference to adaptation by pro-
ducing DNA breakdown products that fuel the spacer
integration process in a two-step, PAM-associated
manner. The helicase-nuclease Cas3 pre-processes
target DNA into fragments of about 30–100 nt en-
riched for thymine-stretches in their 30 ends. The
Cas1-2 complex further processes these fragments
and integrates them sequence-specifically into
CRISPR repeats by coupling of a 30 cytosine of the
fragment. Our results highlight that the selection of
PAM-compliant spacers during priming is enhanced
by the combined sequence specificities of Cas3 and
the Cas1-2 complex, leading to an increased propen-
sity of integrating functional CTT-containing spacers.

INTRODUCTION

Priming is a mechanism by which immune systems provide an

improved immune response to parasite exposure. In verte-

brates, priming of adaptive immunity can occur upon first con-

tact of a T or B cell with a specific antigen and causes epigenetic

changes as well as cell differentiation into effector T or B cells,

producing high levels of antibodies (Bevington et al., 2016).

More recently, immune priming has been observed in inverte-

brates, where it provides increased resistance to previously

encountered pathogens (Kurtz and Franz, 2003; Schmid-Hem-

pel, 2005). In plants, priming refers to a state in which the plant

can activate its defense responses more rapidly and strongly

when challenged by pathogenic microbes, insects, or environ-

mental stress (Conrath et al., 2015). In microbes, priming is a

mechanism in which cells can update their immunological

memory to provide protection against previously encountered
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but slightly changed viruses or conjugative plasmids (Datsenko

et al., 2012; Li et al., 2014; Richter et al., 2014; Swarts et al.,

2012; Vorontsova et al., 2015). Microbial adaptive immune sys-

tems do this by integrating short fragments of invader DNA se-

quences (called spacers) into clusters of regularly interspaced

short palindromic repeats (CRISPR). These spacers are tran-

scribed and processed into small CRISPR RNAs (crRNAs) and

guide Cas (CRISPR-associated) surveillance complexes such

as Cascade, Cas9, Cpf1, Csm, and Cmr to their DNA or RNA

target sequences, resulting in target cleavage and neutraliza-

tion of the invading threat (Carter and Wiedenheft, 2015; Char-

pentier et al., 2015; Makarova et al., 2015; Marraffini, 2015;

Reeks et al., 2013).

For many years, the acquisition of new spacers was the least

understood process in CRISPR-Cas defense, but recent ad-

vances have begun to change this (Amitai and Sorek, 2016; Fi-

neran and Charpentier, 2012; Heler et al., 2014; Sternberg

et al., 2016). In the type I-E system of E. coli, Cas1 and Cas2

form a complex that binds, processes, and integrates DNA frag-

ments into the CRISPR array to form spacers (Arslan et al., 2014;

Nuñez et al., 2014, 2015b; Rollie et al., 2015; Wang et al., 2015).

Apart from priming, spacers can also be acquired in a naive

manner. During naive acquisition, the host acquires spacers

from an invading DNA element that has not been cataloged in

the CRISPR array yet. This process is dependent on DNA repli-

cation of the invading DNA element (Levy et al., 2015) and re-

quires only cas1 and cas2 genes (Yosef et al., 2012). In type I

CRISPR-Cas systems, primed acquisition makes use of pre-ex-

isting spacers that partially match an invading DNA element.

Therefore, primed acquisition of spacers is important to rapidly

counter invaders that escape immunity by mutating their target

site (Cady et al., 2012; Datsenko et al., 2012; Fineran et al.,

2014; Semenova et al., 2011; Xue et al., 2015). Priming allows

new spacers from such an ‘‘escaper’’ to be rapidly acquired,

leading to renewed immunity. Priming is especially advanta-

geous for a host because the process quickly generates a pop-

ulation of bacteria with different spacers against the same virus,

efficiently driving the virus extinct (van Houte et al., 2016). In

addition to Cas1-2, all remaining Cas proteins are required for

priming, including the crRNA effector complex Cascade and

the nuclease-helicase Cas3 (Datsenko et al., 2012; Richter

et al., 2014). Although the genetic requirements for priming are

known, the exact role of these proteins during priming remains
Inc.
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unknown. Several models that explain parts of the priming pro-

cess have been proposed.

In the Cascade-sliding model, Cascade moves along the DNA

until a protospacer-adjacent motif (PAM) is encountered, which

marks the DNA for acquisition of a new spacer (Datsenko

et al., 2012). A second model was proposed in which a Cas1:

Cas2-3 complex translocates away from the primed protospacer

marked by the crRNA-effector complex until a new PAM is

encountered (Richter et al., 2014). A new spacer is then acquired

from this new PAM site. Recently, supporting evidence for this

hypothesis has been obtained. Single-molecule studies have

suggested that Cascade bound to a priming protospacer re-

cruits Cas1-2, which in turn recruit a nuclease inactive Cas3

(Redding et al., 2015). A complex of Cas1-3may then translocate

along the DNA to select new spacers. Although these models

describe the biochemistry and movement of the proteins

involved in priming, it has remained unknown how actual DNA

fragments from an invading element are obtained to drive the

priming process. We have previously put forward a model in

which we propose that DNA breakdown products of Cas3 pro-

vide the positive feedback needed to fuel the priming process

(Swarts et al., 2012). Similar models were proposed for priming

in I-B and I-F systems (Li et al., 2014; Vorontsova et al., 2015).

In line with that hypothesis, it has recently been suggested that

during naive acquisition, spacer precursors are generated during

DNA repair at double-stranded breaks (Levy et al., 2015). These

breaks are frequently formed at stalled replication forks during

DNA replication and are repaired by the RecBCD complex.

RecBCD unwinds the DNA strands with its helicase activity,

while degrading the subsequent single-stranded stretches using

exonuclease activity. The resulting DNA oligomers have been

proposed to form precursors for Cas1-2 to produce new

spacers. Similar to RecBCD, Cas3 is also a nuclease-helicase

that degrades double-stranded DNA (dsDNA) by unwinding,

with the difference that Cas3 has been shown to degrade one

strand at a time (Gong et al., 2014; Huo et al., 2014; Mulepati

and Bailey, 2013; Sinkunas et al., 2013; Westra et al., 2012).

This leads to the hypothesis that Cas3 also produces substrates

for Cas1-2 mediated spacer acquisition during priming.

Here we have tested that hypothesis and prove that plasmid

degradation products produced by Cas3 are bound by the

Cas1-2 complex, processed into new spacers and integrated

into the CRISPR array. The cleavage frequency and cleavage

specificity of Cas3 facilitate the production of functional spacer

precursor molecules that meet all requirements of new spacers.

To achieve this, Cas3 produces fragments that are in the range of

the length of a spacer (30–100 nt). Furthermore, the cleavage

specificity of Cas3 leads to an enrichment of PAM sequences

in the 30 end of these fragments, which enhances the selection

of productive spacer precursors by Cas1-2. Our results demon-

strate that the DNA degradation fragments produced by Cas3

are the direct link between CRISPR interference and adaptation

that make the priming mechanism so robust.

RESULTS

Previous studies have shown that direct interference in type I

CRISPR-Cas systems (i.e. the breakdown of Cascade-flagged
invading DNA by Cas3) is relatively sensitive to mutations in

the PAM and seed sequence of the protospacer (Künne et al.,

2014; Semenova et al., 2011; Wiedenheft et al., 2011; Xue

et al., 2015). Priming on the other hand is an extremely robust

process capable of dealing with highly mutated targets with up

to 13mutations. Priming is influenced by a complex combination

of the number of mutations in a target, the position of these mu-

tations, and the nucleotide identity of the mutation. Furthermore,

the degree of tolerance of mutations in a protospacer during

interference and priming depends on the spacer choice (Xue

et al., 2015).

Timing of Plasmid Loss and Spacer Acquisition Reveals
Distinct Underlying Processes
In order to find the molecular explanation for why some mu-

tants with equal numbers of mutations show priming while

others do not, we performed detailed analysis of a selected

set of target mutants obtained previously (Fineran et al.,

2014). From the available list, we chose the bona fide target

(WT) and 30 mutants carrying an interference permissive

PAM (i.e. 50-CTT-30). The mutants had between 2 and 5 effec-

tive mutations (i.e., mutations outside the kinked positions 6,

12, 18, 24, and 30; Fineran et al., 2014; Jackson et al.,

2014; Mulepati et al., 2014; Zhao et al., 2014) (Figure S1).

We used E. coli strain KD263 with inducible expression of

cas3 and cascade-cas1-2 genes (Shmakov et al., 2014) to

test both direct interference and priming in a plasmid loss

setup. Plasmid loss curves of individual mutants (Figure S2)

showed four distinct behaviors that led us to classify these

target mutants into four groups: mutants capable of only direct

interference (D+P�), mutants capable of direct interference

and priming (D+P+), mutants capable of only priming (D�P+),

and mutants incapable of both direct interference and priming

(D�P�) (Figures 1A and 1B). As expected, rapid plasmid loss

was observed for the bona fide target, but also for five mutant

targets. These target variants (D+P�) showed plasmid loss

within 2 hr post-induction (hpi), reaching complete loss after

3 hpi (Figure 1B, bottom left cluster), and did not incorporate

new spacers. The D+P+ group of mutants showed a slower

decrease in plasmid abundance (starting at �3 hpi), and this

decrease was accompanied by the incorporation of new

spacers 4 hpi (Figure 1B, bottom right cluster). The D�P+

group of mutants showed more strongly delayed plasmid

loss (>5 hpi), and this loss was preceded or directly accompa-

nied by spacer acquisition (Figure 1B, top right cluster). There-

fore, these mutants could not be cleared from the cells by

direct interference initially, but after primed spacer acquisition,

the plasmid was rapidly lost. No spacer incorporation was

observed for D�P� targets, and these variants did not show

any plasmid loss within 48 hpi, similar to a non-target plasmid

(Figure 1B, top left cluster). This group exemplifies that no

naive acquisition had occurred within 48 hr in our experimental

setup and that all spacer integration events observed in P+

groups were due to priming. To validate that spacer acquisi-

tion occurred by priming, we sequenced the newly incorpo-

rated spacers for a representative set of clones, especially

including mutants with late acquisition. We did indeed observe

the 9:1 strand bias of new spacers that is typical for priming
Molecular Cell 63, 852–864, September 1, 2016 853
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Figure 1. Plasmid Loss and Transformation Assay

Plasmid loss was assessed by plating cells and scoring for the GFP signal at various time points after induction of cas genes. Individual assays can be seen in

Figure S2. The bona fide target is abbreviated as WT.

(A) Example curves and CRISPR PCR of four different types of plasmid behaviors that were observed: rapid plasmid loss without spacer integration (D+P�),
delayed plasmid loss and spacer integration (D+P+), strongly delayed plasmid loss and spacer integration (D�P+), and no plasmid loss with no spacer integration

(D�P�).
(B) Summary of plasmid behavior of all mutants, showing timing of first plasmid loss and time of first observable spacer integration.

(C) The relative transformation efficiency is plotted for all mutant plasmids (fold change compared with co-transformed non-target plasmid, log2 scale). Bars are

color coded on the basis of plasmid behavior classification. Error bars represent SEM of triplicate experiments. The positions of mutations are indicated

schematically for each mutant (position 1, bottom; position 32, top). Open ovals represent mutations on positions 6, 12, 18, 24, and 30. Closed ovals represent

mutations outside of those positions (effective mutations). The amount of effective mutations is indicated above or below the schematic.

For a more detailed overview of the mutations, see Figure S1.
(Datsenko et al., 2012; Savitskaya et al., 2013; Swarts et al.,

2012). Taken together, we found that priming is facilitated by

slow or delayed direct interference (D+P+), but that it does

not strictly require direct interference as exemplified by the

D�P+ group.
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Moderate Direct Interference Activity Facilitates the
Priming Process
To verify that rapid plasmid loss indeed results from direct inter-

ference, we performed plasmid transformation assays of the

target plasmid set into E. coli KD263 and compared the
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Figure 2. Electrophoretic Mobility Shift

Assay and Cas3 Activity Assay

All mutants are classified according to previously

identified plasmid behavior. The mean and SD for

each group are indicated.

(A) Electrophoretic mobility shift assay (EMSA) of

the mutant plasmid set. The affinity ratio (ampli-

tude/Kd) is plotted for each mutant (see Table S3

for more details). The bona fide target is abbrevi-

ated as WT.

(B) Cas3 DNA degradation activity assay of mutant

plasmid set. The initial Cas3 DNA cleavage rate

(percentage per minute) is plotted for each mutant.

Individual gels for all activity assays can be found in

Figure S4.
transformation efficiency to a co-transformed control plasmid

(Almendros and Mojica, 2015). Although the bona fide target

plasmid exhibited a relative transformation efficiency that was

512 times lower than the control plasmid (1/512), also mutants

with up to two effective mutations gave rise to strongly

decreased transformation efficiencies (1/16–1/512) (Figure 1C).

This means that these target variants still triggered an efficient

direct interference response. Triple mutants showed a range of

relative transformation efficiencies from full direct interference

(i.e. 1/512) to no direct interference (�1), suggesting a dominant

role for the position of the mutations in the protospacer. Mutants

with four or five effective mutations transformed as efficiently as

the reference plasmid and displayed no direct interference.

When we mapped the classification of all the mutants onto the

relative transformation efficiency data, the same trend was

observed that target variants with the highest direct interference

showed no priming. Instead, intermediate levels of direct inter-

ference led to rapid spacer acquisition, while low levels or the

absence of direct interference led to delayed spacer acquisition.

This also confirms that late plasmid loss in the D�P+ group is

indeed not caused by direct interference with the original spacer

but by primed spacer acquisition followed by direct interference.

Pairing at the Middle Position of Each Segment Is
Important for Direct Interference
The average number of effective mutations in a protospacer in-

creases gradually over the groups D+P�, D+P+, D�P+, and

D�P� (Figure S1). While D+P� and D+P+ had either two or three

effective mutations, the D�P+ mutants had three or four muta-

tions, and the D�P� mutants carried three or five effective muta-

tions in the protospacer. In order to quantify how significant the

shifts in the average number of mutations are, we used empirical

bootstrapping to test against the hypothesis that the classifica-

tion does not depend on the number of mutations. Our analysis

showed that the D+P� and D+P+ groups have significantly fewer

mutations than would be expected if the classification did not

correlate with the number of mutations (>95% and >68% confi-

dence, respectively), while D�P� has significantly more muta-

tions (>95% confidence) (Figure S3A). We next looked in detail
at the number of mutations in each segment and the position

of mutations in each five-nucleotide segment. As has been

observed for the seed sequence (Semenova et al., 2011; Wie-

denheft et al., 2011), this showed a significantly lower than

average number of mutations in segment 1 for D+P� and D+P+

groups (both 95% confidence; Figure S3B). Surprisingly, the

analysis also revealed that groups showing direct interference

(D+P�, D+P+) had no mutations at the third position of each

segment (significantly lower than expected, 95% confidence),

whereas D�P+ and D�P� groups were enriched for mutations

at this position (>68% and >95% confidence, respectively; Fig-

ure S3C). This observation therefore suggests that pairing of

the middle nucleotide of the segment is somehow important

for direct interference. The third nucleotide of each segment

could represent a tipping point in the directional pairing of the

crRNA to the DNA. This may occur during canonical, PAM-

dependent target DNA binding, which leads to R-loop locking,

efficient Cas3 recruitment and target DNA degradation (Blosser

et al., 2015; Huo et al., 2014; Rutkauskas et al., 2015).

Cascade-Plasmid Binding Is Required for Interference
and Priming
To determine the biochemical basis of priming, we first asked the

question what determines whether a mutant target can prime or

not, and we hypothesized that the affinity of Cascade for a target

plasmid would determine its fate. To test this, we performed

plasmid-based mobility shift assays with purified Cascade com-

plexes (Künne et al., 2015). Although the bona fide target and

most of the mutant targets were bound to completion at

increasing Cascade concentrations, some mutant target plas-

mids were only partially bound (Table S3), as has been observed

before (Hochstrasser et al., 2014). By calculating an affinity ratio

(amplitude/Kd) and using it as an index for the binding strength,

we were able to directly compare the binding properties of all

target mutants (Figure 2A). The results show that the bona fide

target plasmid had the highest affinity ratio (0.31 nM�1), while

the mutants cover a range of ratios ranging from very weak bind-

ing (>0.008 nM�1) to almost the same levels as the bona fide

target (<0.1 nM�1). D�P� mutants all cluster together with low
Molecular Cell 63, 852–864, September 1, 2016 855



ratios (<0.02 nM�1), and five of eight show no measurable

Cascade binding. This suggests that a minimal level of target

plasmid binding by Cascade is required for both direct interfer-

ence and priming. However, the affinity ratio alone does not

predict direct interference and/or priming behavior of a target

plasmid.

Cas3 DNA Cleavage Activity Determines Plasmid Fate
Next, we analyzed if the catalytic rate of target DNA degradation

by Cas3 would be related to direct interference and priming.

Target DNA degradation is required for direct interference and

might be required for priming as well, since all cas genes are

required for priming in E. coli (Datsenko et al., 2012). To test

this, we performed Cas3 activity assays with the same panel of

target plasmids (Figures 2B and S4). This showed that there is

a strong dependence between plasmid fate and Cas3 activity.

Mutants capable of only direct interference (D+P�) display

5–10 times higher activity than priming mutant classes (D+P+,

D�P+), while stable mutants (D�P�) show the lowest Cas3 activ-

ity. Furthermore, D+P+ mutants show a slightly higher average

activity than D�P+mutants. The difference between theCascade

affinity and the Cas3 activity plots shows that Cas3 activity is not

a simple reflection of Cascade affinity, but is likely influenced by

other factors such as conformational differences or the dy-

namics of Cascade binding. Taken together, there is a link be-

tween the Cas3 activity on a target and target plasmid fate.

Direct interference requires the highest Cas3 activity, while prim-

ing requires a level of target degradation and occurs at a broad

range of intermediate or low Cas3 activities. Finally, it is striking

that higher Cas3 activities seem to result in faster priming (D+P+

versus D�P+), while very high Cas3 activities (D+P�) do not lead

to priming.

Cas3 Produces Degradation Fragments of Near Spacer
Length
After establishing a connection between plasmid degradation

(direct interference) and primed spacer acquisition, we sought

to analyze whether the degradation fragments created by Cas3

could serve as spacer precursors. To that end, we performed

Cascade-mediated plasmid degradation assays with Cas3 and

plasmids containing the bona fide target or M4 mutant. Agarose

gel electrophoresis showed that both target plasmids were

degraded into similar-sized products smaller than 300 nt. Further

biochemical analysis of the products revealed that the products

were of double-stranded nature and contained phosphates at

their 50 end (Figures S5A and S5B). On the basis of the unidirec-

tional unwinding and single-stranded DNA cleavage mechanism

of Cas3 (Gong et al., 2014; Huo et al., 2014; Mulepati and Bailey,

2013; Sinkunas et al., 2013; Westra et al., 2012), we had ex-

pected to find single-stranded DNA. However, it appeared that

complementary fragments had re-annealed to form duplexes,

most likely generating annealed products with both 30 and 50

overhangs.

In order to determine the exact cleavage patterns of target

plasmids by Cas3, we isolated DNA cleavage products and

sequenced them using the Illumina MiSeq platform. Analysis of

the length of the DNA degradation products from the bona fide

and M4 target revealed that the majority of fragments from the
856 Molecular Cell 63, 852–864, September 1, 2016
target strand had a size of about 30–70 nt (Figures 3B and

S6A). The non-target strand displayed a shifted distribution,

with most fragments being 60–100 nt long. Instead of cleaving

the target DNA randomly, Cas3 produces fragments with a

distinct length profile. Furthermore, the length of the main frac-

tion, especially in the target strand, is close to the length of a

spacer molecule (i.e., 32 or 33 nucleotides), supporting the

idea that these fragments might be used as spacer precursor

molecules.

Cas3 Cleavage Is Sequence Specific for Thymine
Stretches
In order to determine whether Cas3 cleaves the target DNA in a

sequence-specific manner, we analyzed the region encompass-

ing the cleavage site. This revealed a preference for Cas3 to

cleave in thymine-rich sequences for both the bona fide and

the M4 target, preferably cleaving 30 of a T nucleotide (Figures

3C, 3D, and S6B). The same pattern was also observed for sin-

gle-stranded m13mp8 DNA cleaved in the absence of Cascade,

indicating that T-dependent cleavage specificity is an inherent

feature of the HD domain of Cas3. The cleavage specificity of

Cas3 leaves one or multiple T nucleotides on the 30 ends of

DNA degradation products. This enriches the 30 ends of the

fragments for NTT sequences, including the PAM sequence

CTT. A considerable proportion of degradation fragments there-

fore satisfies the requirement of Cas1-2 for having CTT se-

quences in the 30 ends of spacer precursors in order for these

to be correctly integrated into the CRISPR array (Shipman

et al., 2016; Wang et al., 2015). Interestingly, C/T-associated

cleavage has previously been shown for Streptococcus thermo-

philus Cas3 cleaving oligo nucleotides (Sinkunas et al., 2013),

suggesting that this cleavage specificity may be common for

HD-domains of Cas3 proteins.

Cas1-2 Integrate Cas3-Derived Degradation Fragments
To find out if Cas3 degradation products can indeed serve as

spacer precursors, we reconstituted spacer integration in vitro

using purified Cas proteins. Two types of spacer integration as-

sayswere performed (Figure 4A): the first assay used all Cas pro-

teins simultaneously (Cascade, Cas3, Cas1-2) to degrade a

target plasmid and integrate the resulting fragments into a

plasmid carrying a leader and single CRISPR repeat (pCRISPR).

The second assay used DNA degradation products from a sepa-

rate Cascade-Cas3 reaction. These products were incubated

with Cas1-2 and pCRISPR, as described (Nuñez et al., 2015b).

We noticed a pronounced Cas1-2-dependent shift of the degra-

dation fragments in the gel, suggesting the fragments are bound

by Cas1-2 (Figure 4B, left). Interestingly, when Cas1-2 was pre-

sent in the reaction we observed twice as much nicking of

plasmid pCRISPR, suggesting that half-site integration of DNA

fragments into pCRISPR had occurred (Figure 4B, right) (Nuñez

et al., 2015b). The same pCRISPR nicking activity was observed

using purified Cas3 degradation products (integration assay 2),

indicating that the integration reaction was not dependent on

Cascade or Cas3.

To verify that spacer half-site integration had taken place and

not just pCRISPR nicking, we gel-isolated the nicked pCRISPR

band for PCR analysis. Because we did not know the sequence
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(A) Left: schematic of R-loop formed by binding of Cascade to dsDNA target. Right: schematic showing the four distinct Cas3 cleavage sites in dsDNA target.

(B) Length distribution of Cas3 DNA degradation fragments of M4 target.
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(D) Heatmap of dinucleotide frequencies around cleavage sites. Abundance of dinucleotides was measured in a shifting frame within four nucleotides around the

cleavage sites.

See also Figure S6.
of the integrated fragments, we selected three primer pairs that

would amplify frequently incorporated spacers from the plasmid

in vivo (Fineran et al., 2014). Two of the three tested primers gave

a PCR product of the expected size, and we chose one of the

primers for more detailed analysis. It has previously been shown

that the first half-site integration may occur at the boundary of

the leader and repeat in the sense strand (i.e. site 1) or at the

penultimate base of the repeat in the antisense strand (i.e. site

2) (Nuñez et al., 2015b; Rollie et al., 2015). Furthermore, frag-

ments can be integrated in two different orientations. We per-

formed PCR amplification reactions to test for all four different

situations (Figure 5A). This showed that integration of Cas3-

derived degradation products occurs sequence specifically at

both site 1 and site 2 and in both orientations (Figure 5B).
Integration of Fragments in theRepeat Is Nucleotide and
Position Specific
In order to obtain more insight into the accuracy of integration,

we sequenced 48 clones for each of the four primer sets. The re-

sults confirm that fragments from the target and non-target

strands are integrated at both site 1 and site 2 of the repeat. Inte-

gration is very specific to the correct positions in the repeat. At

site 1, 94% of the integrated fragments were coupled correctly

to the first nucleotide of the sense strand of the repeat, whereas

at site 2, 73% of integrated fragments were coupled correctly to

the penultimate nucleotide of the antisense strand of the repeat,

replacing the last nucleotide of the repeat in the process (Fig-

ure 6A). In line with previous findings (Nuñez et al., 2015b; Rollie

et al., 2015), both integration sites show a preference for
Molecular Cell 63, 852–864, September 1, 2016 857



pCRISPR
pTarget
Cascade
Cas3
Cas1-2

 +     +         +             +
WT   WT       M4         M4
 +     +         +             +
 +     +         +             +
 -     +         -             +

 +    +       +          +
WT   WT      M4       M4
 +    +       +         +
 +    +       +         +
 -    +       -         +

Proteinase K treated

Cleavage 
products

Cleavage 
products

Shifted 
products

Shifted 
plasmids

B

Cas3

pTarget

pTarget

Oligo assay

Cas1-2

pCRISPR
Cascade

Cascade

Cas1-2
Cas1-2

Cas3

pCRISPR

pCRISPR

Half site integration

Half site integrationHalf site integration

33 bp protospacer

Integration assay 1 Integration assay 2

Plasmid   degradation

A

pCRISPR

Integration assay 1

pTarget SC
pCRISPR SC + pTarget OC
pCRISPR OC
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(A) Illustration of the three types of assays per-

formed. In the oligo assay, pCRISPR is incubated

with Cas1-2 and a spacer oligo (BG7415/6), lead-

ing to half-site integration. In assay 1, pTarget and

pCRISPR are incubated with Cascade, Cas3, and

Cas1-2 for simultaneous degradation of pTarget

and half-site integration into pCRISPR. In assay 2,

pTarget is incubated with Cascade and Cas3, and

the resulting DNA degradation products are then

separately incubated with pCRISPR and Cas1-2.

(B) Gel electrophoresis of integration assay 1. The

bona fide target is abbreviated as WT. Left gel,

untreated; right gel, proteinase K treated. Cas1-2

presence causes upward shift of DNA. Original

plasmids are supercoiled (SC); half-site integration

causes nicking of pCRISPR, resulting in the open

circular conformation (OC).
coupling incoming C nucleotides: 49% and 55% for site 1 and

site 2, respectively (Figure 6A). Considering that Cas3 DNA

degradation fragments have T nucleotides on their 30 ends, this
suggests that precursors have been pre-processed by Cas1-2

before integration, as has been demonstrated for artificial

substrates (Wang et al., 2015). The majority of the integration

amplicons had a length of only 20–40 nucleotides (Figure 6B),

indicating that the integration reaction prefers short to long

substrates. Altogether, we show that the integration of PAM-

containing spacers in the repeat during priming is enhanced by

the combined sequence specificities of two Cas enzymes: (1)
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Cas3, which leaves thymines in the

30-end of DNA fragments, enriching the

fragment ends for CTT, and (2) Cas1-2,

which prefer CTT-carrying substrates

and process and couple the 30 cytosine
specifically to both integration sites of

the repeat.

DISCUSSION

A remaining gap in our understanding of

type I CRISPR-Cas mechanisms is how

new spacers are selected and processed

before being incorporated into the

CRISPR array. In this work we demon-

strate that Cas3 produces spacer precur-

sors for primed adaptation of the CRISPR

array. Cas3 DNA degradation fragments

fulfill all criteria for spacer precursors that

can be deduced from recent studies of

the Cas1-2 complex (Figure 7). Ideal

spacer precursors in E. coli are partially

double-stranded duplexes of at least 35

nucleotides containing splayed single-

stranded 30 ends with a CTT PAM

sequence on one of the 30 overhangs (Nu-
ñez et al., 2015a; Rollie et al., 2015;

Shipman et al., 2016; Wang et al., 2015).
We have shown that Cas3 DNA degradation products are mainly

double-stranded in vitro. This is most likely due to re-annealing of

the single-stranded products that are produced by the nuclease-

helicase activity of Cas3. It is possible that in vivo, other proteins

are involved in the formation of duplexes after degradation. In

fact, it has been shown that Cas1 from Sulfolobus solfataricus

can facilitate the annealing of oligonucleotides (Han and Krauss,

2009). These re-annealed duplexes likely contain a mix of 30

and 50 overhangs, because the two DNA strands of the target

are degraded independently. This also results in slightly shorter

fragments for the target strand. Despite these differences in
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fragment size, both strands are cleaved by Cas3 with the same

specificity, enriching the 30 ends of the fragments for stretches

of thymines. Contrary to the CTT requirements for spacer integra-

tion, it is known that Cascade tolerates five different PAM se-

quences (i.e. CTT, CTA, CCT, CTC, and CAT) for direct interfer-

ence (Fineran et al., 2014; Leenay et al., 2016). However, the

vast majority of new spacers (97%) resulting from primed acqui-

sition carry CTT PAM sequences (Shmakov et al., 2014). This

further supports the idea that spacer precursors with CTT-ends

are selected non-randomly by the Cas1-2 complex from pools

of Cas3 breakdown fragments and further trimmed to a 30 C
(Wanget al., 2015). These are then coupled to the repeat by nucle-

ophilic attack of the 30-OH (Nuñez et al., 2014; Rollie et al., 2015).

The T-dependent target DNA cleavage specificity of Cas3 further

enhances the production of precursors that fit the requirements of

new spacers by creating a pool of DNA fragments with the correct

size and correct 30 ends. The interference phase of CRISPR im-

munity is therefore effectively coupled to the adaptation phase,

providing positive feedback about the presence of an invader.

It was previously reported that a dinucleotide motif (AA) at the

30 end of a spacer increases the efficiency of naive spacer acqui-

sition (Yosef et al., 2013). We did not observe this motif at the ex-

pected distance from the end in the Cas3 DNA degradation frag-

ments, suggesting that Cas3 does not take the AA motif into

account when generating spacer precursors.
Molecula
We found that the integration reaction

is very precise for the two correct integra-

tion sites in the repeat (site 1 and site 2),

and we observed that the integrated frag-

ments most often were the result of a 30

cytosine coupling reaction. In vivo, how-

ever, only the integration of a CTT-con-

taining fragment at site 2 would lead to

a functional spacer targeting a proto-

spacer with PAM (Figure 7), while CTT

integration at site 1 would result in ‘‘flip-

ped’’ spacers (Shmakov et al., 2014).

Using a selective PCR strategy, we de-

tected primed spacer acquisition events

at both integration sites, and we identi-

fied that DNA fragments are integrated
in both orientations. In type I-E CRISPR-Cas systems, primed

spacer acquisitions display a typical 9:1 strand bias for the

acquisition of spacers targeting the same strand of DNA as

the spacer causing priming (Datsenko et al., 2012; Swarts

et al., 2012). This suggests that in vivo, other factors might be

involved in further increasing the accuracy of functional spacer

integration. This includes the formation of supercomplexes be-

tween various Cas proteins (i.e. Cascade, Cas3, Cas1-2) (Pla-

gens et al., 2012; Redding et al., 2015; Richter et al., 2014)

and the involvement of non-Cas host proteins such as PriA,

RecG, and IHF (Ivan�ci�c-Ba�ce et al., 2015; Nuñez et al., 2016).

IHF ensures that the first integration event takes place at the

leader-proximal end of the repeat (site 1) and might be involved

in ensuring that the PAM cytosine gets integrated at the leader-

distal end (site 2). Supercomplex formation during precursor

generation may lead to the selection of fragments from the

target strand containing a CTT PAM at the 30 end. Although
the length of the observed integration amplicons is centered

around 20–40 nt, we also find amplicons of up to 100 nt. In vivo,

E. coli integrates fragments of 33 nt in length. We speculate

that trimming of the precursor to 33 nt in length occurs after

half-site integration and before formation of the stable integra-

tion intermediate (Figure 7). Despite the mechanisms that lower

erroneous integration of new spacers, it is likely that natural

selection of functional spacers in vivo also plays a role in the
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spacers that end up being part of the first population of bacteria

following a priming event.

It was surprising that the bona fide target and several

D+P� mutants did not show priming despite providing Cas3

degradation products. Furthermore, the degradation fragments

of the bona fide target (D+P�) were very similar to the fragments

of the M4 target (D+P+), which cannot explain the difference in

priming behavior. We propose that these targets are degraded

and cured from the cell too rapidly, giving the acquisition ma-

chinery insufficient time to generate new spacers. However, a

low level of spacer integration might be taking place at undetect-

able levels even for the bona fide target, as has been observed

previously (Swarts et al., 2012; Xue et al., 2015). In this case, cells

with additional spacers do not have a selective growth advan-

tage over cells without new spacers, as the plasmid is already

effectively cleared from cells without new spacers. Mutant tar-

gets with intermediate levels of direct interference, however,

are replicated and subject to interference over a longer time

period, thereby providing more precursors, more time for spacer

acquisition to occur, and therefore a greater selective growth

advantage. Low levels of direct interference lead to a slow prim-

ing response because of the scarcity of spacer precursor mole-

cules. While this paper was under review, another study showed

that perfectly matching protospacers with canonical PAMs can

indeed stimulate priming and that plasmid targeting is the stim-

ulating factor (Semenova et al., 2016). In line with our findings,
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the authors further propose that priming

is usually not observed with fully matching

protospacers because these targets are

degraded too rapidly.

Cut-Paste Spacer Acquisition
We have shown that priming reuses target

DNA breakdown products as precursors

for new spacers, providing support for a

cut-and-paste mechanism of spacer se-

lection (Wang et al., 2015). Compatible

models have recently been proposed for

naive spacer acquisition (Levy et al.,

2015). It was shown that CRISPR adapta-

tion is linked to dsDNA breaks that form at

stalled DNA replication forks. Invading ge-

netic elements often go through a phase

of active DNA replication when they enter

a host cell, and a replication-dependent
mechanism therefore helps the host primarily select spacers

from the invading element. The RecBCD complex is key in this

process as it repairs double-stranded breaks by first chewing

back the ends of the DNA, creating fragments of tens to

thousands of nucleotides (Amitai and Sorek, 2016). These frag-

ments are thought to reanneal and serve as precursors for new

spacers. Other studies have shown the direct involvement of

crRNA-effector complexes in spacer selection. In the type I-F

CRISPR-Cas system of Pseudomonas aeruginosa, the Csy com-

plex is required for naive spacer acquisition (Vorontsova et al.,

2015). Also, Cas9 in type II systems has a direct role in spacer

acquisition (Heler et al., 2015; Wei et al., 2015). Both systems

incorporate spacers very specifically from canonical PAM sites,

suggesting that the Csy complex and Cas9 are directly involved

in PAM recognition during spacer sampling.

Mutations in the Protospacer
In this study, we have focused on the effect of mutations in the

protospacer on direct interference and priming, while maintain-

ing the dominant interference permissive PAM CTT. Apart from

underscoring the importance of the number of mutations and ex-

istence of a seed sequence (Semenova et al., 2011; Künne, et al.,

2014; Wiedenheft et al., 2011; Xue et al., 2015), we uncover that

for direct interference, pairing of the middle nucleotide in each

five-nucleotide segment of the protospacer is disproportionately

important and may represent a tipping point in the binding of a
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Cleavage of a targeted plasmid during direct

interference by Cascade and Cas3. Cleavage

products are near spacer length and reanneal to

form duplexes with 50 and/or 30 overhangs. The
fragments are enriched for NTT sequences on

their 30 ends. A fraction of the duplexes fulfils

spacer precursor requirements: 30 overhangs,

CTT at one 30 end, and a 33 nt distance between

the C and the opposite 30 overhang. Cas1-2

binds spacer precursors with a preference for

ideal duplexes as described above (Nuñez et al.,

2015a; Wang et al., 2015). The precursor is

processed by Cas1-2 to a length of 33 nt with 30

cytosine. In parallel to processing, 30 ends of the

precursor perform a Cas1-2 catalyzed nucleo-

philic attack on the two integration sites of the

repeat (Nuñez et al., 2015b; Rollie et al., 2015).

Integration at the leader-repeat junction occurs

first (Nuñez et al., 2016); subsequently, the PAM-

derived 30 cytosine is integrated to ensure cor-

rect orientation and production of a functional

spacer. A stable spacer integration intermediate

is formed (Arslan et al., 2014). The gaps are filled

in and repaired by the endogenous DNA repair

systems, including DNA polymerase I (Ivan�ci�c-

Ba�ce et al., 2015).
target. None of the mutants showing direct interference carried

mutations at these middle positions. Also, in a previously ob-

tained list of approximately 3,300 triple mutants showing direct

interference (Fineran et al., 2014), mutations at this position

were underrepresented (Figure S3D). This suggests that pairing

at the middle position of each segment may be important for

continuation of the directional zipping process. This process

starts at the PAM and leads to the formation of a canonical

locked R-loop, which is required for Cas3 recruitment and target

DNA degradation (Blosser et al., 2015; Redding et al., 2015; Rut-

kauskas et al., 2015; Szczelkun et al., 2014). We stress that we

have used variants with CTT PAMs only, which can be engaged

by Cascade in the canonical PAM-dependent binding mode
Molecula
(Blosser et al., 2015; Hayes et al., 2016;

Redding et al., 2015; Rutkauskas et al.,

2015) and can also trigger priming. It has

become clear, however, that targets with

mutations in the PAM display a broad

spectrum of distinct characteristics de-

pending on the chosen PAM, including a

range of efficiencies of direct interference

(Westra et al., 2013) and the reluctance to

trigger efficient Cas3 target DNA degra-

dation (Blosser et al., 2015; Hochstrasser

et al., 2014; Mulepati and Bailey, 2013;

Redding et al., 2015; Rutkauskas et al.,

2015; Xue et al., 2015). In many cases,

these PAMs still support the priming pro-

cess (Datsenko et al., 2012; Fineran

et al., 2014; Xue et al., 2015). Targets

with highly disfavored PAMs (Hayes

et al., 2016) are likely engaged in the
non-canonical PAM-independent binding mode (Blosser et al.,

2015) and may require recruitment and translocation events of

Cas1-2 and Cas3 proteins to initiate the target degradation

needed to acquire new spacers.

Conclusions
The findings presented here showcase the intricate PAM inter-

play of all Cas proteins in type I systems to update the CRISPR

memory when receiving positive feedback about the presence

of an invader. The robustness of priming is achieved by three

components that co-evolved to work with PAM sequences:

Cas3, producing spacer precursors enriched for correct PAM

ends, Cas1-2 selecting PAM-compliant spacer precursors, and
r Cell 63, 852–864, September 1, 2016 861



Cascade efficiently recognizing targets with PAMs. This process

stimulates the buildup of multiple spacers against an invader,

preventing the formation of escape mutants (Datsenko et al.,

2012; Richter et al., 2014; Swarts et al., 2012). When the original

spacer triggers sufficiently strong interference, priming acquisi-

tion does not frequently occur. This prevents the unnecessary

buildup of spacers and keeps the CRISPR array from getting

too long. Any subsequent reduction in effectivity of the immune

response by further mutations of the invader will in turn allow

priming acquisition, restoring immunity.

EXPERIMENTAL PROCEDURES

Transformation and Plasmid Loss Assay

Both assays were carried out in E. coli KD263 cells, which have inducible cas

gene expression. Expression was induced with 0.2% L-arabinose and 0.5 mM

isopropyl b-D-1-thiogalactopyranoside where appropriate. Briefly, transfor-

mation efficiency was assessed by comparing colony-forming units (CFUs)

of target plasmid transformations to CFUs of a control plasmid. Plasmid loss

was assessed by loss of fluorescence in colonies, and spacer acquisition

was determined by PCR of the CRISPR array. For details, see ‘‘Transformation

Assay’’ and ‘‘Plasmid Loss Assay’’ in Supplemental Experimental Procedures.

Protein Purification

All proteins were expressed in Bl21-AI cells. Cascade was purified as

described previously (Jore et al., 2011). MBP-Cas3 was purified as described

by Mulepati and Bailey (2013). The Cas1-2 complex was purified similarly to

Cascade using affinity chromatography (see ‘‘Protein Purification’’ in Supple-

mental Experimental Procedures).

Electrophoretic Mobility Shift Assays

Purified Cascade complex was incubated with plasmid at a range of molar ra-

tios (1:1–100:1, Cascade:DNA). After electrophoresis, protein-bound and un-

bound DNA was quantified and the affinity calculated. For details, see

‘‘EMSA Assays’’ in Supplemental Experimental Procedures.

Cas3 DNA Degradation Assays

Cas3 DNA degradation activity was routinely tested by incubating 500 nM

Cas3 with 4 nMM13mp8 single-stranded circular DNA. Plasmid-based assays

were performed by incubating 70 nM Cas3 with 70 nM Cascade, 3.5 nM

plasmid DNA. For details and activity quantification, see ‘‘Cas3 DNA Degrada-

tion Assays’’ in Supplemental Experimental Procedures.

Statistical Testing

We used a version of the empirical bootstrap method (Dekking, 2005) to test

our data against the null hypothesis that observed behaviors (D±P±) do not

correlate with a particular sequence property. For details, see ‘‘Statistical

Testing against the Null Hypothesis’’ in Supplemental Experimental

Procedures.

In Vitro Acquisition Assays

Two types of assays were performed. First, Cas3 plasmid DNA degradation

assays were carried out as described above, and the reaction products

were incubated with Cas1-2 and pWUR869 in buffer R for 60 min. Second,

target plasmid, Cascade, Cas3, Cas1-2, and pWUR869 were incubated in

buffer R for 60 min. For details, see Figure 5A and ‘‘In Vitro Acquisition Assay’’

in Supplemental Experimental Procedures.

Next-Generation Sequencing

Plasmid degradation assays were performed as previously described. Three

different targets were chosen: bona fide target plasmid (pWUR836) or M4

target plasmid (pWUR853) with 0.13 mM ATP and the m13mp8 assay as

described above. Degradation fragments were processed for Illumina MiSeq

sequencing (see ‘‘NGS Library Construction’’ in Supplemental Experimental
862 Molecular Cell 63, 852–864, September 1, 2016
Procedures). For details on data processing, see ‘‘NGS Data Analysis’’ in Sup-

plemental Experimental Procedures.
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Nuñez, J.K., Kranzusch, P.J., Noeske, J., Wright, A.V., Davies, C.W., and

Doudna, J.A. (2014). Cas1-Cas2 complex formation mediates spacer acquisi-

tion during CRISPR-Cas adaptive immunity. Nat. Struct. Mol. Biol. 21,

528–534.
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